STATIONARY SIMPLE WAVES

ON A BAROTROPIC LIQUID SHEAR FLOW

A. K. Khe

Abstract

Stationary three-dimensional flows of a barotropic liquid in a gravity field are considered. In the shallow-water approximation, the Euler equations are transformed into a system of integrodifferential equations by the Euler-Lagrange change of coordinates. A system of simple-wave equations is obtained, for which the theorem of existence of a solution attached to a given shear flow is proved. As an example, a particular solution analogous to the solution of the problem of a gas flow around a convex angle is given.

Key words: shallow water, simple waves, integrodifferential equations.

1. System of Equations. We consider the Euler equations in the stationary case

$$
\begin{equation*}
(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}+\rho^{-1} \nabla p=\boldsymbol{g}, \quad \operatorname{div}(\rho \boldsymbol{u})=0, \tag{1.1}
\end{equation*}
$$

where $\boldsymbol{u}=(u, v, w)^{\mathrm{t}}$ is the velocity vector, $\boldsymbol{g}=(0,0,-g)^{\mathrm{t}}$ is the acceleration of gravity, ρ is the density $[\rho=R(p)$ is a prescribed function], and p is the pressure. The spatial variables are $x, y \in(-\infty,+\infty)$ and $z \in(0, h(x, y))$. System (1.1) for stationary flows of a barotropic liquid in a gravity field over a flat bottom with a free boundary is supplemented by kinematic boundary conditions at the bottom and at the free boundary and by a dynamic condition at the free boundary:

$$
\left.w\right|_{z=0}=0,\left.\quad w\right|_{z=h(x, y)}=u h_{x}+v h_{y},\left.\quad p\right|_{z=h(x, y)}=p_{a}
$$

(p_{a} is the atmospheric pressure).
Stationary simple waves traveling in a constant-density liquid were studied by Teshukov [1]. The planeparallel case of simple-wave propagation in a barotropic liquid layer was examined by Elemesova [2].

After the substitution of variables

$$
\begin{gathered}
x=L_{0} x^{\prime}, \quad y=L_{0} y^{\prime}, \quad z=H_{0} z^{\prime}, \quad u=\sqrt{g H_{0}} u^{\prime}, \quad v=\sqrt{g H_{0}} v^{\prime}, \quad w=\sqrt{g H_{0}} H_{0} w^{\prime} / L_{0}, \\
\rho=R_{0} \rho^{\prime}, \quad p=R_{0} g H_{0} p^{\prime},
\end{gathered}
$$

where L_{0} and H_{0} are the characteristic horizontal and vertical scales and R_{0} has the dimensions of density, Eqs. (1.1) in dimensionless variables acquire the following form (the primes are omitted):

$$
\begin{gathered}
u u_{x}+v u_{y}+w u_{z}+\rho^{-1} p_{x}=0, \quad u v_{x}+v v_{y}+w v_{z}+\rho^{-1} p_{y}=0, \\
\varepsilon^{2}\left(u w_{x}+v w_{y}+w w_{z}\right)+\rho^{-1} p_{z}=-1, \quad \operatorname{div}(\rho \boldsymbol{u})=0
\end{gathered}
$$

$\left(\varepsilon=H_{0} / L_{0}\right)$. In the shallow-water approximation, the parameter ε is assumed to be small compared to unity. In the limit $\varepsilon \rightarrow 0$, the third equation of momenta has the form of the hydrostatic-pressure law

$$
\begin{equation*}
p_{z}=-\rho . \tag{1.2}
\end{equation*}
$$

Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 44, No. 2, pp. 34-41, March-April, 2003. Original article submitted June 11, 2002.

From here, we obtain the formula for pressure

$$
\int_{p_{a}}^{p(x, y, z)} \frac{d p^{\prime}}{R\left(p^{\prime}\right)}=h(x, y)-z
$$

which yields the equalities $p_{x}=\rho h_{x}$ and $p_{y}=\rho h_{y}$.
The remaining equations of system (1.1) can be simplified by passing into the Euler-Lagrange coordinate system [3]

$$
x=x^{\prime}, \quad y=y^{\prime}, \quad z=\Phi\left(x^{\prime}, y^{\prime}, \lambda\right)
$$

where the function Φ is the solution of the boundary-value problem

$$
\begin{gather*}
u(x, y, \Phi) \Phi_{x}+v(x, y, \Phi) \Phi_{y}=w(x, y, \Phi) \tag{1.3}\\
\left.\Phi\right|_{\lambda=0}=0,\left.\quad \Phi\right|_{\lambda=1}=h
\end{gather*}
$$

After this change of variables, the Lagrangian coordinate $\lambda \in[0,1]$ enumerates the material surfaces of the liquid from $z=0(\lambda=0)$ to $z=h(\lambda=1)$.

The first two momentum equations and the continuity equation acquire the form

$$
\begin{gathered}
u u_{x}+v u_{y}+h_{x}=0, \quad u v_{x}+v v_{y}+h_{y}=0 \\
\left(u \rho \Phi_{\lambda}\right)_{x}+\left(v \rho \Phi_{\lambda}\right)_{y}=0
\end{gathered}
$$

We introduce a new unknown function $H(x, y, \lambda)=\rho \Phi_{\lambda}$. Suppose that the Jacobian of the change of variables Φ_{λ} is greater than 0 , then $H>0$.

Since

$$
h=\int_{0}^{1} \Phi_{\lambda} d \lambda=\int_{0}^{1} \rho^{-1} H d \lambda
$$

then the last system of equations can be transformed into the system [4]

$$
\begin{equation*}
(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}+\tau \int_{0}^{1} \nabla H d \lambda=0, \quad \operatorname{div}(H \boldsymbol{u})=0 \tag{1.4}
\end{equation*}
$$

Here \boldsymbol{u} is the projection of the velocity vector onto the horizontal plane: $\boldsymbol{u}=(u, v)^{\mathrm{t}}$; the operators ∇ and div act through the variables x and y, and $\tau=\tau(x, y)$ is the specific volume at the bottom:

$$
\tau(x, y)=(\rho(x, y, 0))^{-1}=\left(R\left(p_{a}+\int_{0}^{1} H d \lambda\right)\right)^{-1}
$$

From the found solution of system (1.4), $u(x, y, \lambda), v(x, y, \lambda)$, and $H(x, y, \lambda)$, the initial variables can be reconstructed as follows. From Eq. (1.2), it follows that

$$
\begin{equation*}
p_{\lambda}=-H \tag{1.5}
\end{equation*}
$$

whence, we obtain

$$
\begin{equation*}
p(x, y, \lambda)=p_{a}+\int_{\lambda}^{1} H(x, y, \nu) d \nu \tag{1.6}
\end{equation*}
$$

Next, since $\Phi_{\lambda}=H / \rho=-p_{\lambda} / R(p)$, the dependence $\lambda(x, y, z)$ (1.6) can be implicitly obtained from the found pressure (1.6) by the formula

$$
\begin{equation*}
z=\Phi(x, y, \lambda)=\int_{p(x, y, \lambda)}^{p(x, y, 0)} \frac{d p^{\prime}}{R\left(p^{\prime}\right)} \tag{1.7}
\end{equation*}
$$

The vertical coordinate of the velocity w is given by the first equation in (1.3).
2. Simple Waves. We will call solutions of system (1.4) of the form

$$
\begin{equation*}
\boldsymbol{u}=\boldsymbol{u}(\alpha(x, y), \lambda), \quad H=H(\alpha(x, y), \lambda) \tag{2.1}
\end{equation*}
$$

simple waves [1]. These solutions correspond to the initial-system solutions of the form $\boldsymbol{u}=\boldsymbol{u}(\alpha(x, y), z)$ and $p=p(\alpha(x, y), z)$.

After substitution of (2.1) into Eqs. (1.4), we obtain the system

$$
\begin{equation*}
(\boldsymbol{u} \cdot \nabla \alpha) \boldsymbol{u}_{\alpha}+\tau \int_{0}^{1} H_{\alpha} d \lambda \nabla \alpha=0, \quad(\boldsymbol{u} \cdot \nabla \alpha) H_{\alpha}+H\left(\boldsymbol{u}_{\alpha} \cdot \nabla \alpha\right)=0 \tag{2.2}
\end{equation*}
$$

for the functions $\boldsymbol{u}(\alpha, \lambda), H(\alpha, \lambda)$, and $\alpha(x, y)$.
We introduce an auxiliary function $\boldsymbol{n}=|\nabla \alpha|^{-1} \nabla \alpha$ being the normal to the contour lines of the simple wave. Then, Eqs. (2.2) transform into

$$
\begin{gather*}
\boldsymbol{u}_{\alpha}=-\frac{\tau}{u_{n}} \int_{0}^{1} H_{\alpha} d \lambda \boldsymbol{n} \tag{2.3}\\
H_{\alpha}=\frac{H \tau}{u_{n}^{2}} \int_{0}^{1} H_{\alpha} d \lambda \tag{2.4}
\end{gather*}
$$

where $u_{n}=\boldsymbol{u} \cdot \boldsymbol{n}$.
It follows from Eq. (2.4) that the normal \boldsymbol{n} satisfies the equation

$$
\begin{equation*}
\tau \int_{0}^{1} \frac{H}{u_{n}^{2}} d \lambda=1 \tag{2.5}
\end{equation*}
$$

Thus, we have system (2.3)-(2.5) for the functions $\boldsymbol{u}(\alpha, \lambda)$ and $H(\alpha, \lambda)$. The simple-wave parameter $\alpha(x, y)$ is defined as follows. On the line $\alpha(x, y)=$ const, the following equality holds:

$$
\nabla \alpha \cdot d \boldsymbol{x}=0 \quad \text { or } \quad \boldsymbol{n} \cdot d \boldsymbol{x}=0
$$

It follows from Eq. (2.5) that $\boldsymbol{n}=\boldsymbol{n}(\alpha)$, and the last equation can be integrated:

$$
\begin{equation*}
\boldsymbol{n}(\alpha) \cdot \boldsymbol{x}=C(\alpha) \tag{2.6}
\end{equation*}
$$

$\left[C(\alpha)\right.$ is an arbitrary function]. If $\boldsymbol{n}^{\prime}(\alpha) \cdot \boldsymbol{x}-C^{\prime}(\alpha) \neq 0$, then, by the theorem of the implicit function, Eq. (2.6) allows us to determine the local values of the function $\alpha(x, y)$. Equation (2.6) means that the simple-wave contour lines are, in fact, straight lines.

For further studies, we choose the function $\alpha=\int_{0}^{1} H d \lambda$ as the simple-wave parameter.
We make the polar change of variables $u=q \cos \theta$ and $v=q \sin \theta$ in the plane $(u, v)(q$ and θ are new sought functions of α and λ). We represent the direction \boldsymbol{n} in the form $\boldsymbol{n}=(-\sin \gamma, \cos \gamma)$, where $\gamma=\gamma(\alpha)$, the angle between the straight line $\alpha=$ const and the x axis, is the sought function. Then, Eqs. (2.3)-(2.5) become

$$
\begin{gather*}
q_{\alpha}=-\tau / q \tag{2.7}\\
\theta_{\alpha}=-\tau \cot (\theta-\gamma) / q^{2} \tag{2.8}\\
H_{\alpha}=H \tau /\left(q^{2} \sin ^{2}(\theta-\gamma)\right) \tag{2.9}\\
\tau \int_{0}^{1} \frac{H d \lambda}{q^{2} \sin ^{2}(\theta-\gamma)}=1 \tag{2.10}
\end{gather*}
$$

We consider Eq. (2.10) in more detail. Note that the function

$$
\chi(\gamma)=1-\tau \int \frac{H}{q^{2} \sin ^{2}(\theta-\gamma)} d \lambda
$$

is periodic with a period π. In addition, the solutions of the equation $\chi(\gamma)=0$, which differ from one another by a multiple of π, characterize the same line $\alpha=$ const. For this reason, it suffices to consider the equation $\chi(\gamma)=0$ over one period.

Let $\theta(\lambda) \in\left[\theta^{0}, \theta^{1}\right]$ for $\lambda \in[0,1]$ and, simultaneously, $\theta^{0}=\left.\theta\right|_{\lambda=0}, \theta^{1}=\left.\theta\right|_{\lambda=1}$, and $\theta_{\lambda}>0$. We consider the case $\theta^{1}-\theta^{0}<\pi$ because, otherwise, the function $\chi(\gamma)$ is undeterminate on the real axis. We put $\theta^{2}=\theta^{0}+\pi$ and consider $\chi(\gamma)$ for $\gamma \in\left(\theta^{1}, \theta^{2}\right)$.

We calculate $\chi^{\prime \prime}(\gamma)$:

$$
\chi^{\prime \prime}(\gamma)=-2 \tau \int_{0}^{1} \frac{H}{q^{2}} \frac{1+2 \cos ^{2}(\theta-\gamma)}{\sin ^{4}(\theta-\gamma)} d \lambda<0
$$

It follows from the last inequality that the function $\chi(\gamma)$ is convex upward and, since $\chi \rightarrow-\infty$ as $\gamma \rightarrow \theta^{1}+0$ and $\gamma \rightarrow \theta^{2}-0$, the function $\chi(\gamma)$ has a single maximum $\gamma_{*} \in\left(\theta^{1}, \theta^{2}\right)$. Therefore, for $\chi\left(\gamma_{*}\right)>0$, Eq. (2.10) has two roots $\gamma_{1,2}$ in the segment $\left(\theta^{1}, \theta^{2}\right)$, which correspond to two families of simple waves.
3. Simple Waves on Flows without Velocity Shear. Integration of Eqs. (2.7)-(2.10) is possible in the case of a flow without velocity shear along the vertical line, i.e., for $u_{\lambda}=v_{\lambda}=0$ or $q=q(\alpha)$ and $\theta=\theta(\alpha)$. Here, the velocity field is the same as in the simple wave in a steady isentropic two-dimensional gas flow (Prandtl-Mayer flow) [5]:

$$
\begin{equation*}
\theta=\theta_{0} \pm \mu(q), \quad \mu(q)=\int \sqrt{\mathrm{M}^{2}-1} \frac{d q}{q} \tag{3.1}
\end{equation*}
$$

(M is the Mach number). Indeed, we find from Eq. (2.10) that

$$
\gamma_{1,2}=\theta \pm \arcsin (\sqrt{\tau \alpha} / q)
$$

Then, according to (2.8), the flow-velocity direction is given by the formula

$$
\theta(\alpha)=\theta_{0} \pm \int_{\alpha_{0}}^{\alpha} \frac{\tau\left(\alpha^{\prime}\right)}{q^{2}\left(\alpha^{\prime}\right)}\left(\frac{q^{2}\left(\alpha^{\prime}\right)}{\tau\left(\alpha^{\prime}\right) \alpha^{\prime}}-1\right)^{1 / 2} d \alpha^{\prime}
$$

After the substitution $\alpha=\alpha(q)$, the integral, by virtue of (2.7), acquires the form

$$
\int_{q_{0}}^{q} \sqrt{\frac{q^{2}}{\tau \alpha}-1} \frac{d q}{q}
$$

If we take the function $\bar{\rho}=\alpha$ as the density in the flow under study and the function $\bar{p}=\int \tau(\alpha) \alpha d \alpha$ as the pressure, then the speed of sound becomes $\bar{c}^{2}=d \bar{p} / d \bar{\rho}=\tau \alpha$ and the Mach number $\mathrm{M}=q / \sqrt{\tau \alpha}$. As a result, we obtain formula (3.1). Recall that $\alpha=\int_{0}^{1} H d \lambda$ and, by definition of the function H, it follows that $\bar{\rho}=\int_{0}^{h} \rho d z$ is the mass of the liquid column from the bottom to the free surface.

To completely determine the solution, we also have to find the pressure. Integrating Eqs. (2.9), we obtain

$$
H(\alpha, \lambda)=D(\lambda) \alpha
$$

where $D(\lambda)$ is an arbitrary function. Then, it follows from (1.6) that

$$
p(\alpha, \lambda)=p_{a}+\alpha \int_{\lambda}^{1} D\left(\lambda^{\prime}\right) d \lambda^{\prime}
$$

The dependence on the z coordinate can be established from Eq. (1.7).
4. Existence of Simple Waves on a Shear Flow. The shear flow is understood as particular solutions of system (1.4) of the form [1]

$$
\boldsymbol{u}=\boldsymbol{u}(\lambda), \quad H=H(\lambda)
$$

which correspond to the solutions $\boldsymbol{u}=(u(z), v(z), 0)^{\mathrm{t}}$ and $p=p(z)$ of the initial system.

The problem of attachment of a simple wave to a specified shear flow $\boldsymbol{u}_{0}(\lambda)$ and $H_{0}(\lambda)$ is formulated as follows. One has to solve system (2.7)-(2.10) with the initial conditions

$$
\begin{equation*}
\left.q\right|_{\alpha=\alpha_{0}}=q_{0}(\lambda),\left.\quad \theta\right|_{\alpha=\alpha_{0}}=\theta_{0}(\lambda),\left.\quad H\right|_{\alpha=\alpha_{0}}=H_{0}(\lambda) \tag{4.1}
\end{equation*}
$$

where $\boldsymbol{u}_{0}=q_{0}\left(\cos \theta_{0}, \sin \theta_{0}\right)$.
To prove the existence of a solution of system (2.7)-(2.10), we may conveniently use, instead of the final relation (2.10), the differential equation

$$
\begin{equation*}
\gamma_{\alpha}=\frac{\tau}{2}\left(\int_{0}^{1} \frac{H \cos (\theta-\gamma)}{q^{2} \sin ^{3}(\theta-\gamma)} d \lambda\right)^{-1}\left(R^{\prime}\left(p_{a}+\int_{0}^{1} H d \lambda\right) \int_{0}^{1} \frac{H d \lambda}{q^{2} \sin ^{2}(\theta-\gamma)}-3 \int_{0}^{1} \frac{H d \lambda}{q^{4} \sin ^{4}(\theta-\gamma)}\right) \tag{4.2}
\end{equation*}
$$

obtained from (2.10) by differentiation with respect to α. The initial condition

$$
\begin{equation*}
\left.\gamma\right|_{\alpha=\alpha_{0}}=\gamma_{0} \tag{4.3}
\end{equation*}
$$

can be found from the equation

$$
\left(R\left(p_{a}+\int_{0}^{1} H_{0} d \lambda\right)\right)^{-1} \int_{0}^{1} \frac{H_{0} d \lambda}{q_{0}^{2} \sin ^{2}\left(\theta_{0}-\gamma_{0}\right)}=1
$$

System (2.7)-(2.9) and (4.2) with the initial conditions (4.1) and (4.3) can be represented as a Cauchy problem for the differential equation in the space of functions λ :

$$
\begin{equation*}
\frac{d \boldsymbol{V}}{d \alpha}=\boldsymbol{F}(\boldsymbol{V}), \quad \boldsymbol{V}\left(\alpha_{0}\right)=\boldsymbol{V}_{0} \tag{4.4}
\end{equation*}
$$

Here $\boldsymbol{V}=(q(\lambda), \theta(\lambda), H(\lambda), \gamma)$ and $\boldsymbol{V}_{0}=\left(q_{0}(\lambda), \theta_{0}(\lambda), H_{0}(\lambda), \gamma_{0}\right)$.
To prove the existence of the solution of problem (4.4), we use the known theorem of the theory of differential equations in Banach spaces [6]: if, for $\left\|\boldsymbol{V}-\boldsymbol{V}_{0}\right\| \leqslant \eta$, the function \boldsymbol{F} satisfies the conditions

$$
\begin{gather*}
\|\boldsymbol{F}(\boldsymbol{V})\| \leqslant M_{1} \tag{4.5}\\
\left\|\boldsymbol{F}\left(\boldsymbol{V}_{2}\right)-\boldsymbol{F}\left(\boldsymbol{V}_{1}\right)\right\| \leqslant M_{2}\left\|\boldsymbol{V}_{2}-\boldsymbol{V}_{1}\right\| \tag{4.6}
\end{gather*}
$$

then there exists a number $\delta>0\left(\delta=\min \left\{\eta / M_{1}, 1 / M_{2}\right\}\right)$ such that problem (4.4) has a unique solution in the interval $\left(\alpha_{0}-\delta, \alpha_{0}+\delta\right)$.

We introduce a norm in the space of vector-functions $\boldsymbol{V}(\lambda)$ as follows:

$$
\|\boldsymbol{V}\|=\max _{\lambda} q(\lambda)+\max _{\lambda}|\theta(\lambda)|+\max _{\lambda} H(\lambda)+|\gamma|
$$

Let $\eta>0$ be such that the initial data \boldsymbol{V}_{0} satisfy the conditions $q_{0}(\lambda)>2 \eta, H_{0}(\lambda)>2 \eta, \chi\left(\gamma_{*}\left(\boldsymbol{V}_{0}\right)\right)>0$, $2 \eta<\left|\theta_{0}(\lambda)-\gamma_{0}\right|<\pi-2 \eta$, and $\left|\gamma_{*}\left(\boldsymbol{V}_{0}\right)-\gamma_{0}\right|>2 \eta$. Then, in the ball $\left\|\boldsymbol{V}-\boldsymbol{V}_{0}\right\|<\eta$, the following inequalities are valid:

$$
\begin{equation*}
q(\lambda)>\eta, \quad H(\lambda)>\eta, \quad \eta<|\theta(\lambda)-\gamma|<\pi-\eta, \quad\left|\gamma_{*}(\boldsymbol{V})-\gamma\right|>\epsilon(\eta) \tag{4.7}
\end{equation*}
$$

$[\epsilon(\eta)>0]$. Inequalities (4.7) enable obtaining estimates (4.5) and (4.6) for system (2.7)-(2.9), (4.2) with certain constants $M_{1}(\eta)$ and $M_{2}(\eta)$. Inequality (4.5) is valid by virtue of continuity of the right side of $\boldsymbol{F}(\boldsymbol{V})$ in the ball $\left\|\boldsymbol{V}-\boldsymbol{V}_{0}\right\|<\eta$ and, to obtain inequality (4.6), the Gâteaux derivative $\boldsymbol{F}^{\prime}(\boldsymbol{V})$ in the ball $\left\|\boldsymbol{V}-\boldsymbol{V}_{0}\right\|<\eta$ should be estimated.
5. Example. Below, we give a particular solution of system (2.7)-(2.10), analogous to the solution of the problem of the flow around a convex corner in gasdynamics (the Prandtl-Mayer flow).

Note that Eq. (2.7) yields the Bernoulli-integral analog

$$
\begin{equation*}
q^{2}(\alpha, \lambda)+2 \int_{p_{a}}^{p_{a}+\alpha} \frac{d p}{R(p)}=q_{m}^{2}(\lambda) \tag{5.1}
\end{equation*}
$$

where $q_{m}(\lambda)$ is an arbitrary positive function.
We seek particular solutions in which the absolute velocity q is independent of λ. This means that $q_{m}=$ const in integral (5.1).

It follows from Eqs. (2.8) and (2.9) that

$$
\begin{equation*}
\theta_{\lambda}=A(\lambda) H \tag{5.2}
\end{equation*}
$$

where $A(\lambda)$ is an arbitrary function. Consider the particular solution with $A=$ const. Equation (2.10) acquires the form

$$
\begin{equation*}
A R q^{2}=\cot \left(\theta^{0}-\gamma\right)-\cot \left(\theta^{1}-\gamma\right) . \tag{5.3}
\end{equation*}
$$

It follows from Eq. (5.2) that $\theta^{1}(\alpha)-\theta^{0}(\alpha)=A \alpha$. Using the formula for the cotangent of a difference, we can transform equality (5.3) into a quadratic equation for $\cot \left(\theta^{1}-\gamma\right)$; solving the resultant quadratic equation, we obtain

$$
\begin{equation*}
\gamma_{1,2}(\alpha)=\theta^{1}+\operatorname{arccot}\left(\frac{A R q^{2}}{2} \pm \sqrt{\left(\frac{A R q^{2}}{2}\right)^{2}+A R q^{2} \cot (A \alpha)-1}\right) . \tag{5.4}
\end{equation*}
$$

Formula (5.4) gives different real roots $\gamma_{1,2}$ if the radicand in the argument of the arctangent is positive. The latter condition is equivalent to the condition $\chi\left(\gamma_{*}\right)>0$:

$$
A R q^{2}>2 \tan (A \alpha / 2)
$$

Substituting expression (5.4) for γ into Eq. (2.8) with $\lambda=1$, we obtain θ^{1} :

$$
\theta^{1}(\alpha)=\theta_{0}^{1}+\int_{\alpha_{0}}^{\alpha}\left(\frac{A}{2} \pm \sqrt{\frac{A^{2}}{4}+\frac{A \cot (A \alpha)}{R q^{2}}-\frac{1}{R^{2} q^{4}}}\right) d \alpha
$$

(θ_{0}^{1} is an arbitrary constant).
It follows from Eqs. (5.2) and (1.5) that

$$
\theta(\alpha, \lambda)=\theta^{1}(\alpha)-A\left(p(\alpha, \lambda)-p_{a}\right) .
$$

Note that the dependence of pressure $p(\alpha, \lambda)$ on the Euler coordinate z can be found from the following equation resulting from (1.2):

$$
z=\int_{p(\alpha, \lambda)}^{p(\alpha, 0)} \frac{d p^{\prime}}{R\left(p^{\prime}\right)}
$$

Here

$$
p(\alpha, 0)=p_{a}+\int_{0}^{1} H d \lambda=p_{a}+\alpha .
$$

Hence, the Euler flow pattern will be completely determined if we find the simple-wave parameter $\alpha(x, y)$. To completely determine the flow in the Euler-Lagrange coordinates x, y, λ, we also have to find the function $H(x, y, \lambda)$.

Consider a particular solution with $C(\alpha) \equiv 0$ in Eq. (2.6), which corresponds to a simple wave centered at the origin. Then, the simple-wave parameter α can be found from the equation

$$
\tan \gamma(\alpha)=y / x
$$

In the polar coordinates $x=r \cos \varphi$ and $y=r \sin \varphi$, this equation means that $\gamma(\alpha)=\varphi$. Then the function $\alpha(\varphi)$ can be found from the equation

$$
\varphi=\theta^{1}(\alpha)+\operatorname{arccot}\left(\frac{A R(\alpha) q^{2}(\alpha)}{2} \pm \sqrt{\left(\frac{A R(\alpha) q^{2}(\alpha)}{2}\right)^{2}+A R(\alpha) q^{2}(\alpha) \cot (A \alpha)-1}\right) .
$$

The values of A, q_{m}, θ_{0}^{1}, and α_{0} can be calculated from the initial data:

$$
\theta_{0}^{1}=\theta_{0}(1), \quad \alpha_{0}=\int_{0}^{1} H_{0} d \lambda, \quad A=\frac{\theta_{0}(1)-\theta_{0}(0)}{\alpha_{0}}, \quad q_{m}=\sqrt{q_{0}^{2}+2 \int_{p_{a}}^{p_{a}+\alpha_{0}} \frac{d p}{R(p)}} .
$$

Fig. 1

The particular solution obtained, considered over the interval $\left[\alpha_{0}, \alpha_{1}\right]$, matches two steady shear flows of depths

$$
h_{0}=\int_{p_{a}}^{p_{a}+\alpha_{0}} \frac{d p}{R(p)}, \quad h_{1}=\int_{p_{a}}^{p_{a}+\alpha_{1}} \frac{d p}{R(p)}
$$

with velocities $\left(q_{0}, \theta_{0}(\lambda)\right)$ and $\left(q\left(\alpha_{1}\right), \theta\left(\alpha_{1}, \lambda\right)\right)$. The region occupied by the simple wave is bounded by the rays $\varphi\left(\alpha_{0}\right)$ and $\varphi\left(\alpha_{1}\right)$.

Figure 1 shows the shape of the free surface and the velocity field at the beginning and at the end of the interval $\left[\alpha_{0}, \alpha_{1}\right]$ for the polytropic dependence $p=S \rho^{æ}(S=$ const, $æ>1)$.

The author is grateful to V. M. Teshukov for problem statement and interest.
This work was supported by INTAS (Grant No. 01-868) and by the Program for Supporting Leading Scientific Schools (Grant No. 00-15-96163).

REFERENCES

1. V. M. Teshukov, "Spatial simple waves on a shear flow," J. Appl. Mech. Tech. Phys., 43, No. 5, 661-670 (2002).
2. B. N. Elemesova, "Simple waves in a barotropic vortex fluid layer," J. Appl. Mech. Tech. Fiz., 38, No. 5, 703-710 (1997).
3. V. M. Teshukov, "Hyperbolicity of long-wave equations," Dokl. Akad. Nauk SSSR, 284, No. 3, 555-559 (1985).
4. V. M. Teshukov, "Long waves in an eddying barotropic liquid," J. Appl. Mech. Tech. Phys., 35, No. 6, 823-831 (1994).
5. L. V. Ovsyannikov, Lectures on the Principles of Gas Dynamics [in Russian], Nauka, Moscow (1981).
6. Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in the Banach Space [in Russian], Nauka, Moscow (1970).
