STATIONARY SIMPLE WAVES

ON A BAROTROPIC LIQUID SHEAR FLOW

A. K. Khe

UDC 532.59 + 517.948.34

Stationary three-dimensional flows of a barotropic liquid in a gravity field are considered. In the shallow-water approximation, the Euler equations are transformed into a system of integrodifferential equations by the Euler-Lagrange change of coordinates. A system of simple-wave equations is obtained, for which the theorem of existence of a solution attached to a given shear flow is proved. As an example, a particular solution analogous to the solution of the problem of a gas flow around a convex angle is given.

Key words: shallow water, simple waves, integrodifferential equations.

1. System of Equations. We consider the Euler equations in the stationary case

$$(\boldsymbol{u}\cdot\nabla)\boldsymbol{u} + \rho^{-1}\nabla p = \boldsymbol{g}, \quad \operatorname{div}(\rho\boldsymbol{u}) = 0,$$
(1.1)

where $\boldsymbol{u} = (u, v, w)^{t}$ is the velocity vector, $\boldsymbol{g} = (0, 0, -g)^{t}$ is the acceleration of gravity, ρ is the density $[\rho = R(p)$ is a prescribed function], and p is the pressure. The spatial variables are $x, y \in (-\infty, +\infty)$ and $z \in (0, h(x, y))$. System (1.1) for stationary flows of a barotropic liquid in a gravity field over a flat bottom with a free boundary is supplemented by kinematic boundary conditions at the bottom and at the free boundary and by a dynamic condition at the free boundary:

$$w|_{z=0} = 0,$$
 $w|_{z=h(x,y)} = uh_x + vh_y,$ $p|_{z=h(x,y)} = p_a$

 $(p_a \text{ is the atmospheric pressure}).$

Stationary simple waves traveling in a constant-density liquid were studied by Teshukov [1]. The planeparallel case of simple-wave propagation in a barotropic liquid layer was examined by Elemesova [2].

After the substitution of variables

$$x = L_0 x', \quad y = L_0 y', \quad z = H_0 z', \quad u = \sqrt{gH_0} u', \quad v = \sqrt{gH_0} v', \quad w = \sqrt{gH_0} H_0 w'/L_0,$$

 $\rho = R_0 \rho', \qquad p = R_0 gH_0 p',$

where L_0 and H_0 are the characteristic horizontal and vertical scales and R_0 has the dimensions of density, Eqs. (1.1) in dimensionless variables acquire the following form (the primes are omitted):

$$uu_x + vu_y + wu_z + \rho^{-1}p_x = 0, \qquad uv_x + vv_y + wv_z + \rho^{-1}p_y = 0,$$

$$\varepsilon^2(uw_x + vw_y + ww_z) + \rho^{-1}p_z = -1, \qquad \operatorname{div}(\rho u) = 0$$

 $(\varepsilon = H_0/L_0)$. In the shallow-water approximation, the parameter ε is assumed to be small compared to unity. In the limit $\varepsilon \to 0$, the third equation of momenta has the form of the hydrostatic-pressure law

$$p_z = -\rho. \tag{1.2}$$

Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 44, No. 2, pp. 34–41, March–April, 2003. Original article submitted June 11, 2002.

From here, we obtain the formula for pressure

$$\int\limits_{p_a}^{p(x,y,z)} \frac{dp'}{R(p')} = h(x,y) - z$$

which yields the equalities $p_x = \rho h_x$ and $p_y = \rho h_y$.

The remaining equations of system (1.1) can be simplified by passing into the Euler–Lagrange coordinate system [3]

$$x = x',$$
 $y = y',$ $z = \Phi(x', y', \lambda),$

where the function Φ is the solution of the boundary-value problem

$$u(x, y, \Phi) \Phi_x + v(x, y, \Phi) \Phi_y = w(x, y, \Phi),$$

$$\Phi|_{\lambda=0} = 0, \qquad \Phi|_{\lambda=1} = h.$$
(1.3)

After this change of variables, the Lagrangian coordinate $\lambda \in [0, 1]$ enumerates the material surfaces of the liquid from z = 0 ($\lambda = 0$) to z = h ($\lambda = 1$).

The first two momentum equations and the continuity equation acquire the form

$$\begin{split} uu_x + vu_y + h_x &= 0, \qquad uv_x + vv_y + h_y = 0, \\ (u\rho\Phi_\lambda)_x + (v\rho\Phi_\lambda)_y &= 0. \end{split}$$

We introduce a new unknown function $H(x, y, \lambda) = \rho \Phi_{\lambda}$. Suppose that the Jacobian of the change of variables Φ_{λ} is greater than 0, then H > 0.

Since

$$h = \int_{0}^{1} \Phi_{\lambda} \, d\lambda = \int_{0}^{1} \rho^{-1} H \, d\lambda,$$

then the last system of equations can be transformed into the system [4]

$$(\boldsymbol{u}\cdot\nabla)\boldsymbol{u} + \tau \int_{0}^{1} \nabla H \,d\lambda = 0, \qquad \operatorname{div}(H\boldsymbol{u}) = 0.$$
 (1.4)

Here \boldsymbol{u} is the projection of the velocity vector onto the horizontal plane: $\boldsymbol{u} = (u, v)^{t}$; the operators ∇ and div act through the variables x and y, and $\tau = \tau(x, y)$ is the specific volume at the bottom:

$$\tau(x,y) = (\rho(x,y,0))^{-1} = \left(R \left(p_a + \int_0^1 H \, d\lambda \right) \right)^{-1}.$$

From the found solution of system (1.4), $u(x, y, \lambda)$, $v(x, y, \lambda)$, and $H(x, y, \lambda)$, the initial variables can be reconstructed as follows. From Eq. (1.2), it follows that

$$p_{\lambda} = -H,\tag{1.5}$$

whence, we obtain

$$p(x, y, \lambda) = p_a + \int_{\lambda}^{1} H(x, y, \nu) \, d\nu.$$
(1.6)

Next, since $\Phi_{\lambda} = H/\rho = -p_{\lambda}/R(p)$, the dependence $\lambda(x, y, z)$ (1.6) can be implicitly obtained from the found pressure (1.6) by the formula

$$z = \Phi(x, y, \lambda) = \int_{p(x, y, \lambda)}^{p(x, y, 0)} \frac{dp'}{R(p')}.$$
(1.7)

The vertical coordinate of the velocity w is given by the first equation in (1.3).

2. Simple Waves. We will call solutions of system (1.4) of the form

$$\boldsymbol{u} = \boldsymbol{u}(\alpha(x, y), \lambda), \qquad H = H(\alpha(x, y), \lambda)$$
(2.1)

simple waves [1]. These solutions correspond to the initial-system solutions of the form $\boldsymbol{u} = \boldsymbol{u}(\alpha(x,y),z)$ and $p = p(\alpha(x,y),z)$.

After substitution of (2.1) into Eqs. (1.4), we obtain the system

$$(\boldsymbol{u}\cdot\nabla\alpha)\boldsymbol{u}_{\alpha}+\tau\int_{0}^{1}H_{\alpha}\,d\lambda\,\,\nabla\alpha=0,\qquad(\boldsymbol{u}\cdot\nabla\alpha)H_{\alpha}+H(\boldsymbol{u}_{\alpha}\cdot\nabla\alpha)=0$$
(2.2)

for the functions $\boldsymbol{u}(\alpha, \lambda)$, $H(\alpha, \lambda)$, and $\alpha(x, y)$.

We introduce an auxiliary function $\mathbf{n} = |\nabla \alpha|^{-1} \nabla \alpha$ being the normal to the contour lines of the simple wave. Then, Eqs. (2.2) transform into

$$\boldsymbol{u}_{\alpha} = -\frac{\tau}{u_n} \int_{0}^{1} H_{\alpha} \, d\lambda \, \boldsymbol{n}; \qquad (2.3)$$

$$H_{\alpha} = \frac{H\tau}{u_n^2} \int_0^1 H_{\alpha} \, d\lambda, \tag{2.4}$$

where $u_n = \boldsymbol{u} \cdot \boldsymbol{n}$.

It follows from Eq. (2.4) that the normal n satisfies the equation

$$\tau \int_{0}^{1} \frac{H}{u_n^2} d\lambda = 1.$$
(2.5)

Thus, we have system (2.3)–(2.5) for the functions $u(\alpha, \lambda)$ and $H(\alpha, \lambda)$. The simple-wave parameter $\alpha(x, y)$ is defined as follows. On the line $\alpha(x, y) = \text{const}$, the following equality holds:

$$\nabla \alpha \cdot d\boldsymbol{x} = 0$$
 or $\boldsymbol{n} \cdot d\boldsymbol{x} = 0.$

It follows from Eq. (2.5) that $\boldsymbol{n} = \boldsymbol{n}(\alpha)$, and the last equation can be integrated:

$$\boldsymbol{n}(\alpha) \cdot \boldsymbol{x} = C(\alpha) \tag{2.6}$$

 $[C(\alpha)$ is an arbitrary function]. If $n'(\alpha) \cdot x - C'(\alpha) \neq 0$, then, by the theorem of the implicit function, Eq. (2.6) allows us to determine the local values of the function $\alpha(x, y)$. Equation (2.6) means that the simple-wave contour lines are, in fact, straight lines.

For further studies, we choose the function $\alpha = \int_{0}^{1} H d\lambda$ as the simple-wave parameter.

We make the polar change of variables $u = q \cos \theta$ and $v = q \sin \theta$ in the plane (u, v) $(q \text{ and } \theta \text{ are new sought} functions of <math>\alpha$ and λ). We represent the direction \boldsymbol{n} in the form $\boldsymbol{n} = (-\sin \gamma, \cos \gamma)$, where $\gamma = \gamma(\alpha)$, the angle between the straight line $\alpha = \text{const}$ and the x axis, is the sought function. Then, Eqs. (2.3)–(2.5) become

$$q_{\alpha} = -\tau/q; \tag{2.7}$$

$$\theta_{\alpha} = -\tau \cot{(\theta - \gamma)}/q^2; \qquad (2.8)$$

$$H_{\alpha} = H\tau/(q^2 \sin^2(\theta - \gamma)); \qquad (2.9)$$

$$\tau \int_{0}^{1} \frac{H \, d\lambda}{q^2 \sin^2(\theta - \gamma)} = 1. \tag{2.10}$$

We consider Eq. (2.10) in more detail. Note that the function

$$\chi(\gamma) = 1 - \tau \int \frac{H}{q^2 \sin^2(\theta - \gamma)} \, d\lambda$$

is periodic with a period π . In addition, the solutions of the equation $\chi(\gamma) = 0$, which differ from one another by a multiple of π , characterize the same line $\alpha = \text{const.}$ For this reason, it suffices to consider the equation $\chi(\gamma) = 0$ over one period.

Let $\theta(\lambda) \in [\theta^0, \theta^1]$ for $\lambda \in [0, 1]$ and, simultaneously, $\theta^0 = \theta|_{\lambda=0}$, $\theta^1 = \theta|_{\lambda=1}$, and $\theta_{\lambda} > 0$. We consider the case $\theta^1 - \theta^0 < \pi$ because, otherwise, the function $\chi(\gamma)$ is undeterminate on the real axis. We put $\theta^2 = \theta^0 + \pi$ and consider $\chi(\gamma)$ for $\gamma \in (\theta^1, \theta^2)$.

We calculate $\chi''(\gamma)$:

$$\chi''(\gamma) = -2\tau \int_0^1 \frac{H}{q^2} \frac{1 + 2\cos^2(\theta - \gamma)}{\sin^4(\theta - \gamma)} d\lambda < 0.$$

It follows from the last inequality that the function $\chi(\gamma)$ is convex upward and, since $\chi \to -\infty$ as $\gamma \to \theta^1 + 0$ and $\gamma \to \theta^2 - 0$, the function $\chi(\gamma)$ has a single maximum $\gamma_* \in (\theta^1, \theta^2)$. Therefore, for $\chi(\gamma_*) > 0$, Eq. (2.10) has two roots $\gamma_{1,2}$ in the segment (θ^1, θ^2) , which correspond to two families of simple waves.

3. Simple Waves on Flows without Velocity Shear. Integration of Eqs. (2.7)–(2.10) is possible in the case of a flow without velocity shear along the vertical line, i.e., for $u_{\lambda} = v_{\lambda} = 0$ or $q = q(\alpha)$ and $\theta = \theta(\alpha)$. Here, the velocity field is the same as in the simple wave in a steady isentropic two-dimensional gas flow (Prandtl–Mayer flow) [5]:

$$\theta = \theta_0 \pm \mu(q), \qquad \mu(q) = \int \sqrt{\mathbf{M}^2 - 1} \, \frac{dq}{q} \tag{3.1}$$

(M is the Mach number). Indeed, we find from Eq. (2.10) that

$$\gamma_{1,2} = \theta \pm \arcsin\left(\sqrt{\tau \alpha}/q\right).$$

Then, according to (2.8), the flow-velocity direction is given by the formula

$$\theta(\alpha) = \theta_0 \pm \int_{\alpha_0}^{\alpha} \frac{\tau(\alpha')}{q^2(\alpha')} \left(\frac{q^2(\alpha')}{\tau(\alpha')\alpha'} - 1\right)^{1/2} d\alpha'.$$

After the substitution $\alpha = \alpha(q)$, the integral, by virtue of (2.7), acquires the form

$$\int_{q_0}^q \sqrt{\frac{q^2}{\tau\alpha} - 1} \, \frac{dq}{q}$$

If we take the function $\bar{\rho} = \alpha$ as the density in the flow under study and the function $\bar{p} = \int \tau(\alpha) \alpha \, d\alpha$ as the pressure, then the speed of sound becomes $\bar{c}^2 = d\bar{p}/d\bar{\rho} = \tau \alpha$ and the Mach number $M = q/\sqrt{\tau \alpha}$. As a result, we obtain formula (3.1). Recall that $\alpha = \int_{0}^{1} H \, d\lambda$ and, by definition of the function H, it follows that $\bar{\rho} = \int_{0}^{h} \rho \, dz$ is the mass of the liquid column from the bottom to the free surface.

To completely determine the solution, we also have to find the pressure. Integrating Eqs. (2.9), we obtain

$$H(\alpha, \lambda) = D(\lambda)\alpha,$$

where $D(\lambda)$ is an arbitrary function. Then, it follows from (1.6) that

$$p(\alpha, \lambda) = p_a + \alpha \int_{\lambda}^{1} D(\lambda') \, d\lambda'$$

The dependence on the z coordinate can be established from Eq. (1.7).

4. Existence of Simple Waves on a Shear Flow. The shear flow is understood as particular solutions of system (1.4) of the form [1]

$$\boldsymbol{u} = \boldsymbol{u}(\lambda), \qquad H = H(\lambda),$$

which correspond to the solutions $\boldsymbol{u} = (u(z), v(z), 0)^{t}$ and p = p(z) of the initial system.

The problem of attachment of a simple wave to a specified shear flow $u_0(\lambda)$ and $H_0(\lambda)$ is formulated as follows. One has to solve system (2.7)–(2.10) with the initial conditions

$$q|_{\alpha=\alpha_0} = q_0(\lambda), \qquad \theta|_{\alpha=\alpha_0} = \theta_0(\lambda), \qquad H|_{\alpha=\alpha_0} = H_0(\lambda), \tag{4.1}$$

where $\boldsymbol{u}_0 = q_0(\cos\theta_0, \sin\theta_0)$.

To prove the existence of a solution of system (2.7)–(2.10), we may conveniently use, instead of the final relation (2.10), the differential equation

$$\gamma_{\alpha} = \frac{\tau}{2} \Big(\int_{0}^{1} \frac{H\cos(\theta - \gamma)}{q^{2}\sin^{3}(\theta - \gamma)} d\lambda \Big)^{-1} \Big(R' \Big(p_{a} + \int_{0}^{1} H d\lambda \Big) \int_{0}^{1} \frac{H d\lambda}{q^{2}\sin^{2}(\theta - \gamma)} - 3 \int_{0}^{1} \frac{H d\lambda}{q^{4}\sin^{4}(\theta - \gamma)} \Big), \tag{4.2}$$

obtained from (2.10) by differentiation with respect to α . The initial condition

$$\gamma|_{\alpha=\alpha_0} = \gamma_0 \tag{4.3}$$

can be found from the equation

$$\left(R\left(p_{a}+\int_{0}^{1}H_{0}\,d\lambda\right)\right)^{-1}\int_{0}^{1}\frac{H_{0}\,d\lambda}{q_{0}^{2}\sin^{2}(\theta_{0}-\gamma_{0})}=1.$$

System (2.7)–(2.9) and (4.2) with the initial conditions (4.1) and (4.3) can be represented as a Cauchy problem for the differential equation in the space of functions λ :

$$\frac{d\mathbf{V}}{d\alpha} = \mathbf{F}(\mathbf{V}), \qquad \mathbf{V}(\alpha_0) = \mathbf{V}_0.$$
(4.4)

Here $\mathbf{V} = (q(\lambda), \theta(\lambda), H(\lambda), \gamma)$ and $\mathbf{V}_0 = (q_0(\lambda), \theta_0(\lambda), H_0(\lambda), \gamma_0)$.

To prove the existence of the solution of problem (4.4), we use the known theorem of the theory of differential equations in Banach spaces [6]: if, for $\|\mathbf{V} - \mathbf{V}_0\| \leq \eta$, the function \mathbf{F} satisfies the conditions

$$\|\boldsymbol{F}(\boldsymbol{V})\| \leqslant M_1; \tag{4.5}$$

$$\|F(V_2) - F(V_1)\| \leq M_2 \|V_2 - V_1\|,$$
(4.6)

then there exists a number $\delta > 0$ ($\delta = \min\{\eta/M_1, 1/M_2\}$) such that problem (4.4) has a unique solution in the interval $(\alpha_0 - \delta, \alpha_0 + \delta)$.

We introduce a norm in the space of vector-functions $V(\lambda)$ as follows:

$$\|V\| = \max_{\lambda} q(\lambda) + \max_{\lambda} |\theta(\lambda)| + \max_{\lambda} H(\lambda) + |\gamma|.$$

Let $\eta > 0$ be such that the initial data V_0 satisfy the conditions $q_0(\lambda) > 2\eta$, $H_0(\lambda) > 2\eta$, $\chi(\gamma_*(V_0)) > 0$, $2\eta < |\theta_0(\lambda) - \gamma_0| < \pi - 2\eta$, and $|\gamma_*(V_0) - \gamma_0| > 2\eta$. Then, in the ball $||V - V_0|| < \eta$, the following inequalities are valid:

$$q(\lambda) > \eta, \quad H(\lambda) > \eta, \quad \eta < |\theta(\lambda) - \gamma| < \pi - \eta, \quad |\gamma_*(\mathbf{V}) - \gamma| > \epsilon(\eta)$$

$$(4.7)$$

 $[\epsilon(\eta) > 0]$. Inequalities (4.7) enable obtaining estimates (4.5) and (4.6) for system (2.7)–(2.9), (4.2) with certain constants $M_1(\eta)$ and $M_2(\eta)$. Inequality (4.5) is valid by virtue of continuity of the right side of F(V) in the ball $\|V - V_0\| < \eta$ and, to obtain inequality (4.6), the Gâteaux derivative F'(V) in the ball $\|V - V_0\| < \eta$ should be estimated.

5. Example. Below, we give a particular solution of system (2.7)-(2.10), analogous to the solution of the problem of the flow around a convex corner in gasdynamics (the Prandtl–Mayer flow).

Note that Eq. (2.7) yields the Bernoulli-integral analog

$$q^{2}(\alpha,\lambda) + 2 \int_{p_{a}}^{p_{a}+\alpha} \frac{dp}{R(p)} = q_{m}^{2}(\lambda), \qquad (5.1)$$

where $q_m(\lambda)$ is an arbitrary positive function.

We seek particular solutions in which the absolute velocity q is independent of λ . This means that $q_m = \text{const}$ in integral (5.1).

It follows from Eqs. (2.8) and (2.9) that

$$\theta_{\lambda} = A(\lambda)H,\tag{5.2}$$

where $A(\lambda)$ is an arbitrary function. Consider the particular solution with A = const. Equation (2.10) acquires the form

$$ARq^{2} = \cot\left(\theta^{0} - \gamma\right) - \cot\left(\theta^{1} - \gamma\right).$$
(5.3)

It follows from Eq. (5.2) that $\theta^1(\alpha) - \theta^0(\alpha) = A\alpha$. Using the formula for the cotangent of a difference, we can transform equality (5.3) into a quadratic equation for cot $(\theta^1 - \gamma)$; solving the resultant quadratic equation, we obtain

$$\gamma_{1,2}(\alpha) = \theta^1 + \operatorname{arccot}\left(\frac{ARq^2}{2} \pm \sqrt{\left(\frac{ARq^2}{2}\right)^2 + ARq^2 \operatorname{cot}\left(A\alpha\right) - 1}\right).$$
(5.4)

Formula (5.4) gives different real roots $\gamma_{1,2}$ if the radicand in the argument of the arctangent is positive. The latter condition is equivalent to the condition $\chi(\gamma_*) > 0$:

$$ARq^2 > 2 \tan (A\alpha/2).$$

Substituting expression (5.4) for γ into Eq. (2.8) with $\lambda = 1$, we obtain θ^1 :

$$\theta^{1}(\alpha) = \theta_{0}^{1} + \int_{\alpha_{0}}^{\alpha} \left(\frac{A}{2} \pm \sqrt{\frac{A^{2}}{4} + \frac{A\cot(A\alpha)}{Rq^{2}} - \frac{1}{R^{2}q^{4}}}\right) d\alpha$$

 $(\theta_0^1 \text{ is an arbitrary constant}).$

It follows from Eqs. (5.2) and (1.5) that

$$\theta(\alpha, \lambda) = \theta^1(\alpha) - A(p(\alpha, \lambda) - p_a).$$

Note that the dependence of pressure $p(\alpha, \lambda)$ on the Euler coordinate z can be found from the following equation resulting from (1.2):

$$z = \int_{p(\alpha,\lambda)}^{p(\alpha,0)} \frac{dp'}{R(p')}$$

Here

$$p(\alpha, 0) = p_a + \int_0^1 H \, d\lambda = p_a + \alpha.$$

Hence, the Euler flow pattern will be completely determined if we find the simple-wave parameter $\alpha(x, y)$. To completely determine the flow in the Euler-Lagrange coordinates x, y, λ , we also have to find the function $H(x, y, \lambda)$.

Consider a particular solution with $C(\alpha) \equiv 0$ in Eq. (2.6), which corresponds to a simple wave centered at the origin. Then, the simple-wave parameter α can be found from the equation

$$\tan \gamma(\alpha) = y/x.$$

In the polar coordinates $x = r \cos \varphi$ and $y = r \sin \varphi$, this equation means that $\gamma(\alpha) = \varphi$. Then the function $\alpha(\varphi)$ can be found from the equation

$$\varphi = \theta^1(\alpha) + \operatorname{arccot}\left(\frac{AR(\alpha)q^2(\alpha)}{2} \pm \sqrt{\left(\frac{AR(\alpha)q^2(\alpha)}{2}\right)^2 + AR(\alpha)q^2(\alpha)\cot(A\alpha) - 1}\right).$$

The values of A, q_m , θ_0^1 , and α_0 can be calculated from the initial data:

$$\theta_0^1 = \theta_0(1), \quad \alpha_0 = \int_0^1 H_0 \, d\lambda, \quad A = \frac{\theta_0(1) - \theta_0(0)}{\alpha_0}, \quad q_m = \sqrt{q_0^2 + 2 \int_{p_a}^{p_a + \alpha_0} \frac{dp}{R(p)}}.$$

Fig. 1

The particular solution obtained, considered over the interval $[\alpha_0, \alpha_1]$, matches two steady shear flows of depths

$$h_0 = \int_{p_a}^{p_a + \alpha_0} \frac{dp}{R(p)}, \qquad h_1 = \int_{p_a}^{p_a + \alpha_1} \frac{dp}{R(p)}$$

with velocities $(q_0, \theta_0(\lambda))$ and $(q(\alpha_1), \theta(\alpha_1, \lambda))$. The region occupied by the simple wave is bounded by the rays $\varphi(\alpha_0)$ and $\varphi(\alpha_1)$.

Figure 1 shows the shape of the free surface and the velocity field at the beginning and at the end of the interval $[\alpha_0, \alpha_1]$ for the polytropic dependence $p = S\rho^{\mathscr{R}}$ ($S = \text{const}, \ \mathscr{R} > 1$).

The author is grateful to V. M. Teshukov for problem statement and interest.

This work was supported by INTAS (Grant No. 01-868) and by the Program for Supporting Leading Scientific Schools (Grant No. 00-15-96163).

REFERENCES

- 1. V. M. Teshukov, "Spatial simple waves on a shear flow," J. Appl. Mech. Tech. Phys., 43, No. 5, 661–670 (2002).
- B. N. Elemesova, "Simple waves in a barotropic vortex fluid layer," J. Appl. Mech. Tech. Fiz., 38, No. 5, 703–710 (1997).
- 3. V. M. Teshukov, "Hyperbolicity of long-wave equations," Dokl. Akad. Nauk SSSR, 284, No. 3, 555–559 (1985).
- V. M. Teshukov, "Long waves in an eddying barotropic liquid," J. Appl. Mech. Tech. Phys., 35, No. 6, 823–831 (1994).
- 5. L. V. Ovsyannikov, Lectures on the Principles of Gas Dynamics [in Russian], Nauka, Moscow (1981).
- Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in the Banach Space [in Russian], Nauka, Moscow (1970).